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A CHARACTERIZATION OF RIEMANNIAN MANIFOLDS
OF CONSTANT CURVATURE

RICHARD HOLZSAGER

As in [2], consider the parallel bodies of a hypersurface in a Riemannian
manifold. That is, suppose M is a submanifold of codimension 1 with
oriented normal bundle in a manifold M. Define a homotopy #: M X R —
M, by letting A(x, #) = 7,(2), where 7, is the geodesic through x whose tangent
at x is the positive (with respect to the orientation on the normal bundie of M)
unit normal vector. In other words, A,(M) is obtained by translating M distance
t along orthogonal geodesics.

If M is a compact hypersurface (with or without boundary), it makes sense
to consider the area (or volume) A4,(?) of the singular hypersurface M,. If M
and M are C=, so is A,: R — R. In [1], we showed that surfaces of constant
curvature ¢ are characterized by the fact that for any hypersurface (i.e., curve)
Ay satisfies the differential equation 4” + ¢4 = 0. This result is now gener-
alized to higher dimensions.

Theorem. For an n-dimensional C* Riemannian manifold M, there is a
differential equation A + a, A"V + ... + a,A = 0 (a; constant) satisfied
by A, for every hypersurface M if and only if M has constant sectional
curvature. The relation berween the equation and the curvature s

c= az/ (n -g 1) .

Remark. It is impossible for an equation of order m less than n to be
satisfied by every 4. To show this choose some x ¢ M and an orthogonal base
T, --.,T, for the tangent space at x. Define a coordinate system ¢,, about x
by ¢n(ry, -+, r,) = exp, X, where y = exp, Y.2,,r;T;, and X is the parallel
translation of X "*'r,T; to y along exp.t }.%.,rT;. Let U be a small
neighborhood of (1,0, - --,0) in an m-sphere $™, and V a small neighborhood
of the origin in an (n — m — 1)-dimensional Euclidean space R™»~™-!. For
small values of ¢, ¢, will imbed (tU) X V in M, ¢,((tU) X V) forms a family

of “parallel” hypersurfaces and A() = t’"fJE ogo(t X id) d Vol, integral

over U X V, where g is the determinant of the metric tensor on M with respect
to ¢. Then A™(0) = m! Vol (U X V), A®(0) = 0 for i < m. Thus 4 cannot
satisfy an equation of order #:.
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Proof of the theorem. Assume the equation is satisfied by every A4,. Let
¢ = ¢,_, be as in the remark (i.e., build a coordinate systern using tubes about
the geodesic through T,). Let

Ay = Hm A(2)/ Vol (U x V) = **/ g (4(1,0, ---,0)) ,

limit taken as U and V converge down to (1,0,.---,00e 5% % and Oe R
respectively. 4, will also satisfy the equation, giving for t = 0

(1) D) =DITINE + (1= D —2)!aT/ g + (1= D! a4z =0,

where we write T; for /6x, throughout the coordinate system.

Let us also write D, for covariant differentiation with respect to T,. Then,
as in [2], TWe= Yr,7:v &, where D,T; = X, 7,T, and T\T,v/ g =
(52 ;e2rarss + 2i Tare)¥ g . By definition of ¢, 1752 rD, (221 r;T) =0
at any point of the form (¢ry, - - -, tr,_,, r,). In particular, this implies D,T; =
Oforalli,j<n-—1atx. Also, D, T, =0 for all i, so D,T, = D, T, = 0.
Consequently 7,:(x) = O for all i, Thus

(2) C)STru+a=0 atx.

Tiu= T )T Ty = T2 1<To T)) = DruT<To T
=TT, D\T;) =<D\T,,DT;) + <{T;,D.DT,) =<T;,D.D.T,},

so (2) becomes
(3) (3) = <TwDDT + & =0.

At ¢(xy, ~ -+, %), DFr X% D;T, =0. Applying D; (i=1,---,n—1)
at ¢(x,,0, - - -, 0) gives 2 x,D,T, + xD;D,T, = 0. Dividing by x, and applying
D, give 2D,\D;T, + D,D\D, + x,D,D,D,T, = 0, so D,D,T, = —2D,D,T, at x.
Therefore the sectional curvature determined by T, and T; at x for { =
1,---,n—1isR(1,) = —-3XD,D,T,,T;. Also, R(1,n) = —<(D.D,T,,T,>,
since D, T, vanishes along ¢(0, - - -,0,7), so D,D,T, = 0 at x. Now (3) becomes

(4) R(l,n)+%anR(1, i)=a2/('21) .

The roles played in this whole argumentby 7, and T, ( = 2, -- -, n — 1) may
be switched, adding #(R(1,i) — R(1, n)) to the left side without changing the
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right. Thus R(1, 8 = R(1,n), so Jg LR, ) = az/(;), or R(l, n) =

a, / (" 'g 1>. Since x,T,, T, were arbitrary, this finishes the proof in one
direction.

Now assume M has constant curvature. For any tangent ¥ to M at x, ¥ has
a canonical extension along the orthogonal geodesic (V(h,(x)) = dh,(V)), so
if T is the unit normal vector, then D,V makes sense. Note that if W is another
tangent to M at x, (DV, W) = (D;W, V). To see this, a coordinate system
¢ in M about x is said to be allowable if it is obtained by taking a coordinate
system + in M about x and setting g(r,, - - -, 1) = A (Y(ry, - - -, 7). U T, V, W
are extended to have constant components in an allowable coordinate system,
then [V, Wl = [T, Vl1=IT,Wl=(T,V> =<{T,W>=0, so

DV, Wy ={DyT, W) = —(T,D,W> = —(T,DyV>
=L{DyT, V> =D W, V> .

Further, applying T to the relation <DV, W) = (D W, V) gives{D DV, W)
= (DD W, V>.

Since {(DrV, W) is symmetric and bilinear in ¥V and W, it is possible to
choose an orthonormal base T,, - - -, T, for the tangent space to M at x such
that (D;T;,T;> =0 for i # j, and also an allowable coordinate system so
thatat x 8/ox; = T, fori = 1, - . -, n (where we now write T, for T). If V is
a linear combination of T, - - -, T, at any point of the coordinate neighborhood
and R is the curvature tensor, then <(R(T,, V)T,,V> = {D,DT,,V) —
{DDyT,,Vy = —{D\DyT,,Vy = —(D,D,\V, V> since D\T, is identically O.
If ¢ is the sectional curvature, then since (T,, V> =0 and <7,,T,> =1,
c= —{D,DV,V>/{V,V>. Thus, as quadratic forms on the span of
1,,---,T, at any point, (D,D,V, V) is equal to {—cV, V). The symmetric
bilinear forms {D,D,V,W> and {-cV, W) are equal, so {D,D\T;,T;) =
{—cT;,T;> fori,j > 2. Since also

<D1D1Ti9 T1> = T1<D1Tia T1> - <D1T,;, D1Tx> = T1<DiT1a T1>
= %‘T1Ti<T1: T1> =0 = {(—cT,, T1> »

it follows that D,.D,T; = —cT,fori =2,.-.,n.
Next note that ¢{T;, T;> + {D,T;, D,T;) is constant along &.(x) (i, = 2),

since
T.(c(T;, T;» + <D,T;,D,T;)
=(D\T;,T;> + (T;,D,T;> + <D,D,T,,D\T;> + {D\T;,D,\D\T;) =0 .

Butatx,{D,T;, T;y = Oforj+#i,s0D,T;isamultiplecf T;fori =2, .-.,n,
so «T;, T;> + <D,T;,D,T;> = 0 at x and consequently at 4,(x). Thus
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T,TLT;, T,y =<D,D,T,,T;> + 2D, T;,D\T;> + {T;,D,D,T;>
= —4C<Ti, Tj> ’

for i,j > 2, i = j. This second order equation, together with the initial con-
ditions {7y, T;> = T\{T;, T;> = 0 at x, implies that {T;, T,> is identically O
along A,(x). Therefore [dh,(T, A\ --- A T,)| = []5|T;| at h(x). Now

LTy = —c|T:| + KTi, TXDi Ty, DTy — <D\Ty, T)/|TWF
= —c|T4

(D,T; being a muitiple of T,). This means that |T,] is a linear combination of
sin+/ctand cos v/ ct or of sinhy/~ct and coshv/—ct or of 1 and x,
depending on whether ¢ is positive, negative or 0. Therefore |dn (T, A ---
A T,)| is a linear combination of sin *v/ ¢t cos® ¢~/ c t or of sinh /' —c ¢
cosh? i/ “ctorof 1,.--,27% In any of these cases there is a (unique)
differential equation of order n with constant coeficients satisfied by any such
combination. The same equation would hold for 4, applied to the umnit (n — 1)-
vector at any y in M, and therefore also for 4, since integration over M will
commute with differentiation by ¢.

Added in proof. -More general results have been announced in the author’s
paper, Riemannian manifolds of finite order, Bull. Amer. Math. Soc. 78 (1972)
200-201.
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